EMA5001 Lecture 16
Diffusional Transformation in Solids - Introduction
Introduction

- **Phase transformation**
 - Solid-gas reaction: e.g., sublimation, oxidation of metals
 - Solid-liquid conversion: e.g., solidification
 - Solid-solid phase transformation: precipitation; polymorph transformation;

- **At least one (can be both) of the following changes for solid-state phase transformation**
 - (Crystal) structure
 - α-Fe $\leftrightarrow \gamma$-Fe
 - Extent of ordering
 - (Chemical) composition
 - Spinodal decomposition

- **Thermodynamics vs. Kinetics**
 - Lowering (not necessarily minimization) of system free energy
 - Overcome kinetic barriers
Characteristics of Solid-State Phase Transformation (1)

- **Large barrier**
 - Volume strain energy (difference in molar volume)
 - Interfacial energy (chemical term + geometric term)

- **Slow migration (mobility) of atoms**
 - (Self) diffusion coefficient in solid is $\sim 10^{-6}$ of that in liquid

- **Mostly heterogeneous nucleation**
 - All types of defects as potential heterogeneous nucleation sites
 - Vacancy
 - Dislocation
 - Grain boundary
 - Stacking fault
 - Second phase
 - Surface

Meta-stable phase may appear

- Although I → II is energetically favorable
- Too large barrier (especially at lower T) makes existence of meta-stable phase possible

New phase often has specific shapes

- Interface energy controlled – Matching of low energy interfaces
- Strain energy controlled – Plate like

Various interface structures (coherent, semi-coherent, incoherent)

Match of certain orientation and crystal planes between new phase and matrix

\[\Delta G \]

\[\Delta G_a \]

Classification of Solid-State Phase Transformation by Thermodynamics

1st order phase transformation

\begin{align*}
G_1 &= G_2 \\
\mu_i^1 &= \mu_i^2 \\
\left(\frac{\partial G_1}{\partial T} \right)_P &\neq \left(\frac{\partial G_2}{\partial T} \right)_P \\
\Delta V &\neq 0
\end{align*}

\begin{align*}
\left(\frac{\partial G_1}{\partial P} \right)_T &\neq \left(\frac{\partial G_2}{\partial P} \right)_T \\
dG &= VdP - SdT \\
\Delta S &\neq 0
\end{align*}

Examples: most solid phase transformation including solidification, precipitation

2nd order phase transformation

\begin{align*}
G_1 &= G_2 \\
\mu_i^1 &= \mu_i^2 \\
\left(\frac{\partial G_1}{\partial T} \right)_P &= \left(\frac{\partial G_2}{\partial T} \right)_P \\
\left(\frac{\partial^2 G_1}{\partial T^2} \right)_P &\neq \left(\frac{\partial^2 G_2}{\partial T^2} \right)_P \\
\left(\frac{\partial^2 G_1}{\partial P^2} \right)_T &\neq \left(\frac{\partial^2 G_2}{\partial P^2} \right)_T \\
\frac{\partial^2 G_1}{\partial P \partial T} &\neq \frac{\partial^2 G_2}{\partial P \partial T} \\
\Delta C_p &\neq 0 \\
\Delta \beta &\neq 0 \\
\Delta \alpha &\neq 0
\end{align*}

Examples: some order-disorder transformation
1st Order Phase Transformation vs. 2nd Order Phase Transformation

- Change of G, S, V, H, and C_p with T

![Graphs showing the change of various properties with temperature for 1st and 2nd order phase transformations.](image)

Classification of Solid-State Phase Transformation by Kinetics

- **By diffusion**
 - Diffusionless
 - Diffusion
 - a) Precipitation: \(\alpha' \rightarrow \alpha + \beta \)
 Change in solubility with temperature
 - \(\gamma - \text{Fe} \rightarrow \alpha - \text{Fe} + \gamma - \text{Fe} \)
 - b) Eutectoid transformation: \(\gamma \rightarrow \alpha + \beta \)
 - \(\gamma - \text{Fe} \rightarrow \alpha - \text{Fe} + \text{Fe}_3\text{C} \)
 - c) Ordering: \(\alpha \) (disordered) \(\rightarrow \alpha \) (ordered)
 - \(\text{Cu-Zn; Cu-Au} \)
 - d) Massive transformation
 - \(\beta \text{ brass} \rightarrow \alpha \text{ brass} \) at 38 atom% Zn
 - e) Polymorphic changes
 - \(\text{Diamond} \rightarrow \text{graphite} \)
 - \(\gamma - \text{Fe} \rightarrow \alpha - \text{Fe} \)

Phase Transformations in Metals & Alloys, Porter, 3rd Ed, 2008, p. 262